N ov 2 00 2 TOPOLOGY OF U ( 2 , 1 ) REPRESENTATION SPACES
نویسنده
چکیده
The Betti numbers of moduli spaces of representations of a universal central extension of a surface group in the groups U(2, 1) and SU(2, 1) are calculated. The results are obtained using the identification of these moduli spaces with moduli spaces of Higgs bundles, and Morse theory, following Hitchin’s programme [14]. This requires a careful analysis of critical submanifolds which turn out to have a description using either symmetric products of the surface or moduli spaces of Bradlow pairs.
منابع مشابه
N ov 2 00 7 Basic Hypergeometric Functions and Covariant Spaces for Even Dimensional Representations of
Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and it is observed that they may be ex...
متن کاملN ov 2 00 4 Notes on Stein - Sahi representations and some problems of non L 2 harmonic analysis Neretin
We discuss one natural class of kernels on pseudo-Riemannian symmetric spaces. Recently, Oshima [67] published his formula for c-function for L 2 on pseudo-Riemannian symmetric spaces (see also works of Delorm [12] and van den Ban– Schlichtkrull [3], [4]). After this, there arises a natural question about other solvable problems of non-commutative harmonic analysis. In the Appendix to the paper...
متن کاملN ov 2 00 6 A Combination Theorem for Strong Relative Hyperbolicity Mahan
We prove a combination theorem for trees of (strongly) relatively hyperbolic spaces and finite graphs of (strongly) relatively hyperbolic groups. This gives a geometric extension of Bestvina and Feighn's Combination Theorem for hyperbolic groups.
متن کاملar X iv : m at h . R T / 0 11 13 06 v 1 2 9 N ov 2 00 1 CARTAN DETERMINANTS AND SHAPOVALOV FORMS
We compute the determinant of the Gram matrix of the Shapovalov form on weight spaces of the basic representation of an affine Kac-Moody algebra of ADE type (possibly twisted). As a consequence, we obtain explicit formulae for the determinants of the Cartan matrices of p-blocks of the symmetric group and its double cover, and of the associated Hecke algebras at roots of unity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008